1. 3 x 101 + 4 x 100 is

(a) 0.34

(b) 3.4

(c) 34

(d) 340

Show Answer

Answer. c

2. The decimal equivalent of 1000 is

(a) 2

(b) 4

(c) 6

(d) 8

Show Answer

Answer. d

3. The binary number 11011101 is equal to the decimal number

(a) 121

(b) 221

(c) 441

(d) 256

Show Answer

Answer. b

4. The decimal number 21 is equivalent to the binary number

(a) 10101

(b) 10001

(c) 10000

(d) 11111

Show Answer

Answer. a

5. The decimal number 250 is equivalent to the binary number

(a) 11111010

(b) 11110110

(c) 11111000

(d) 11111011

Show Answer

Answer. a

6. The sum of 1111 + 1111 in binary equals

(a) 0000

(b) 2222

(c) 11110

(d) 11111

Show Answer

Answer. c

7. The difference of 1000 − 100 equals

(a) 100

(b) 101

(c) 110

(d) 111

Show Answer

Answer. a

8. The 1’s complement of 11110000 is

(a) 11111111

(b) 11111110

(c) 00001111

(d) 10000001

Show Answer

Answer. c

9. The 2’s complement of 11001100 is

(a) 00110011

(b) 00110100

(c) 00110101

(d) 00110110

Show Answer

Answer. b

10. The decimal number + 122 is expressed in the 2’s complement form as

(a) 01111010

(b) 11111010

(c) 01000101

(d) 10000101

Show Answer

Answer. a

11. The decimal number − 34 is expressed in the 2’s complement form as

(a) 01011110

(b) 10100010

(c) 11011110

(d) 01011101

Show Answer

Answer. c

12. A single-precision floating-point binary number has a total of

(a) 8 bits

(b) 16 bits

(c) 24 bits

(d) 32 bits

Show Answer

Answer. d

13. In the 2’s complement form, the binary number 10010011 is equal to the decimal number

(a) −19

(b) +109

(c) +91

(d) −109

Show Answer

Answer. d

14. The binary number 101100111001010100001 can be written in octal as

(a) 54712308

(b) 54712418

(c) 26345218

(d) 231625018

Show Answer

Answer. b

15. The binary number 10001101010001101111 can be written in hexadecimal as

(a) AD46716

(b) 8C46F16

(c) 8D46F16

(d) AE46F16

Show Answer

Answer. c

 

error: Content is protected !!