Cayley-Hamilton Theorem

Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation. This theorem is named after two mathematicians, Arthur Cayley & William Rowan Hamilton. This theorem provides an alternative way to find the inverse of a matrix. Let aoλn + a1λn-1 + a2λn-2 + ………………. + an-2λ2 + an-1λ + an = 0 be … Read more

Determinant Properties

The determinant of matrix P is denoted as |P| i.e. matrix name between two parallel lines. It is also written as det(P) or by symbol delta (Δ). The determinant is always calculated for a square matrix. So if we talk about matrix in this article then it will be understood as a square matrix. In … Read more

Conjugate Transpose of a Matrix – Example & Properties

Conjugate transpose of a matrix ‘P’ is basically a matrix which is equal to the conjugate of the matrix obtained by taking the transpose of the matrix ‘P’. In order to find the conjugate transpose of any matrix; firstly, transpose is obtained and secondly, the conjugate is obtained. The conjugate transpose is generally denoted as … Read more

What is Unitary Matrix? Example

When the conjugate transpose of a complex square matrix is equal to the inverse of itself, then such matrix is called as unitary matrix. If Q is a complex square matrix and if it satisfies Qθ = Q-1 then such matrix is termed as unitary. Please note that Qθ and Q-1 represent the conjugate transpose and inverse of the matrix Q, … Read more

error: Content is protected !!