# Determinant Properties

The determinant of matrix P is denoted as |P| i.e. matrix name between two parallel lines. It is also written as det(P) or by symbol delta (Δ). The determinant is always calculated for a square matrix. So if we talk about matrix in this article then it will be understood as a square matrix. In this article, we will see the determinant properties in a lucid manner.

## Properties of determinant

1. If any row of a matrix is completely zero then the determinant of this matrix is zero. For example, |P| = 0

2. If any column of a matrix is completely zero then the determinant of this matrix is zero. For example, |A| = 0

3. If any two rows of a matrix are identical then the determinant of this matrix is zero. For example, |B| = 0

4. If any two columns of a matrix are identical then the determinant of this matrix is zero. For example, |R| = 0

5. The determinant of a matrix and determinant of a transpose of a matrix is identical. In other words, the determinant of a matrix does not change if rows and columns are interchanged. |A| = 20 |AT| = 20

6. If two rows of a determinant are interchanged then the value of the determinant is multiplied by (-1). For example, Now, row 1 and row 3 are interchanged then 7. If two columns of a determinant are interchanged then the value of the determinant is multiplied by (-1). For example, Now, column 1 and column 2 are interchanged then 8. If P is a square matrix of order n and λ is any scalar then

|λP| = λn |P|

9. If P and Q be the square matrix of the same order then

|PQ| = |P| |Q|

10. If P be a square matrix then |Pn| = (|P|)n

11. If P be a non-singular matrix then 11. If P be a square matrix then

13. 14. If all the elements of any one row are multiplied by a common number (λ) then the determinant becomes λ times the value of the original determinant. Let multiply all the elements of row 2 of the determinant by 5 then 15. If all the elements of any one column are multiplied by a common number (λ) then the determinant becomes λ times the value of the original determinant. Let multiply all the elements of column 3 of the determinant by 2 then This site uses Akismet to reduce spam. Learn how your comment data is processed.

error: Content is protected !!