16. Given the matrices $J=\begin{bmatrix} 3 & 2 & 1\\ 2 & 4 & 2\\ 1 & 2 & 6 \end{bmatrix} \; and \; \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix}$, the product KTJK is
- 21
- 25
- 23
- 48
17. Real matrices [A]3×1, [B]3×3, [C]3×5, [D]5×3, [E]5×5 and [F]5×1 are given. Matrices [B] and [E] are symmetric.
Following statements are made with respect to these matrices.
- Matrix product [F]T[C]T[B][C][F] is a scalar.
- Matrix product [D]T[F][D] is always symmetric.
With reference to the above statements, which of the following applies?
- statements (i) is true but (ii) is false
- statement (i) is false but (ii) is true
- both the statements are true
- both the statements are false
18. Let A be an m x n matrix and B an n x m matrix. It is given that determinant (Im + AB) = determinant (In + BA), where Ik is the k x k identity matrix. Using the above property, the determinant of the matrix given below is
\[\begin{bmatrix} 2 & 1 & 1 & 1\\ 1 & 2 & 1 & 1\\ 1 & 1 & 2 & 1\\ 1 & 1 & 1 & 2 \end{bmatrix}\]
- 2
- 5
- 8
- 16
19. There are three matrices P(4 x 2), Q(2 x 4) and R(4 x 1). The minimum of multiplication required to compute the matrix PQR is
- 12
- 15
- 18
- 16
20. Given that
\[A=\begin{bmatrix} -5 & -3\\ 2 & 0 \end{bmatrix} \; and \; I=\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\]
the value of A3 is
- 15A + 12I
- 19A + 30I
- 17A + 15I
- 17A + 21I
21. The inverse of the matrix $\begin{bmatrix} 3+2i & i\\ -i & 3-2i \end{bmatrix}$ is
- $\frac{1}{12}\begin{bmatrix} 3+2i & -i\\ i & 3-2i \end{bmatrix}$
- $\frac{1}{12}\begin{bmatrix} 3-2i & -i\\ i & 3+2i \end{bmatrix}$
- $\frac{1}{14}\begin{bmatrix} 3+2i & -i\\ i & 3-2i \end{bmatrix}$
- $\frac{1}{14}\begin{bmatrix} 3-2i & -i\\ i & 3+2i \end{bmatrix}$
22. For a matrix $M=\begin{bmatrix} \frac{3}{5} & \frac{4}{5}\\ x & \frac{3}{5} \end{bmatrix}$, the transpose of the matrix is equal to the inverse of the matrix, [M]T = [M]-1. The value of x is given by
- $-\frac{4}{5}$
- $-\frac{3}{5}$
- $\frac{3}{5}$
- $\frac{4}{5}$
23. A square matrix B is skew-symmetric if
- BT = -B
- BT = B
- B-1 = B
- B-1 = BT
24. The characteristic equation of a (3 x 3) matrix P is defined as
a(λ) = |P – λI| = λ3 + λ2 + 2λ + 1 = 0
If I denotes identity matrix, then the inverse of matrix P will be
- P2 + P + 2I
- P2 + P + I
- -(P2 + P + I)
- -(P2 + P + 2I)
25. The inverse of the 2 x 2 matrix $\begin{bmatrix} 1 & 2\\ 5 & 7 \end{bmatrix}$ is
- $\frac{1}{3}\begin{bmatrix} -7 & 2\\ 5 & -1 \end{bmatrix}$
- $\frac{1}{3}\begin{bmatrix} 7 & 2\\ 5 & 1 \end{bmatrix}$
- $\frac{1}{3}\begin{bmatrix} 7 & -2\\ -5 & 1 \end{bmatrix}$
- $\frac{1}{3}\begin{bmatrix} -7 & -2\\ -5 & -1 \end{bmatrix}$
26. [A] is square matrix which is neither symmetric nor skew-symmetric and [A]T is its transpose. The sum and difference of these matrices are defined as [S] = [A] + [A]T and [D] = [A] – [A]T, respectively. Which of the following statements is true?
- both [S] and [D] are symmetric
- both [S] and [D] are skew symmetric
- [S] is skew symmetric and [D] is symmetric
- [S] is symmetric and [D] is skew symmetric
27. Let $A=\begin{bmatrix} 2 & -0.1\\ 0 & 3 \end{bmatrix} \; and \; A^{-1}\begin{bmatrix} \frac{1}{2} & a\\ 0 & b \end{bmatrix}$. Then (a+b) =
- $\frac{7}{20}$
- $\frac{3}{20}$
- $\frac{19}{60}$
- $\frac{11}{20}$
28. Let $R=\begin{bmatrix} 1 & 0 & -1\\ 2 & 1 & -1\\ 2 & 3 & 2 \end{bmatrix}$, Then top row of R-1 is
- [5 6 4]
- [5 -3 1]
- [2 0 -1]
- [2 -1 1/2]
29. Consider the matrices X(4 x 3), Y(4 x 3) and P(2 x 3). The order of [P(XTY)-1PT]T will be
- (2 x 2)
- (3 x 3)
- (4 x 3)
- (3 x 4)
30. Let A, B, C, D be n x n matrices, each with non-zero determinant, if ABCD = I, then B-1 is
- D-1C-1A-1
- CDA
- ADC
- does not necessarily exist
31. For which value of x will the matrix given below becomes singular?
\[\begin{bmatrix} 8 & x & 0\\ 4 & 0 & 2\\ 12 & 6 & 0 \end{bmatrix}\]
- 4
- 6
- 8
- 12
32. The product of matrices (PQ)-1P is
- P-1
- Q-1
- P-1Q-1P
- PQP-1