Eigenvalues and Eigenvectors MCQ

1. Consider the matrix \begin{bmatrix} 5 & -1\\ 4 & 1 \end{bmatrix}. Which one of the following statements is true for the eigen values and eigen vectors of this matrix?

  1. eigen value 3 has a multiplicity of 2, and only one independent eigen vector exists.
  2. eigen value 3 has a multiplicity of 2, and two independent eigen vector exists.
  3. eigen value 3 has a multiplicity of 2, and no independent eigen vector exists.
  4. eigen value are 3 and -3, and two independent eigen vectors exist.
Answer
Answer. a

2. If the characteristic polynomial of a 3 x 3 matrix M over R (the set of real numbers) is λ3 – 4λ2 + aλ + 30, a ∈ R and one eigen value of M is 2. Then the largest among the absolute values of the eigen values of M is

  1. 5
  2. 2
  3. 3
  4. 6
Answer
Answer. a

3. Consider the 5 x 5 matrix

    \[A=\begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 5 & 1 & 2 & 3 & 4\\ 4 & 5 & 1 & 2 & 3\\ 3 & 4 & 5 & 1 & 2\\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}\]

It is given that A has only one real eigen value. Then the real eigen value of A is

  1. -2.5
  2. 0
  3. 15
  4. 25
Answer
Answer. c

4. The matrix A=\begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2}\\ 0 & -1 & 0\\ \frac{1}{2} & 0 & \frac{3}{2} \end{bmatrix} has three distinct eigen values and one of its eigen vectors is \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}. Which one of the following can be another eigen vector of A?

  1. \begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}
  2. \begin{bmatrix} -1\\ 0\\ 0 \end{bmatrix}
  3. \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}
  4. \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}
Answer
Answer. c

5. The eigen values of the matrix given below are

    \[\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & -3 & -4 \end{bmatrix}\]

  1. (0, -1, -3)
  2. (0, -2, -3)
  3. (0, 2, 3)
  4. (0, 1, 3)
Answer
Answer. a

6. The eigen values of the matrix A=\begin{bmatrix} 1 & -1 & 5\\ 0 & 5 & 6\\ 0 & -6 & 5 \end{bmatrix} are

  1. -1, 5, 6
  2. 1, -5 ± j6
  3. 1, 5 ± j6
  4. 1, 5, 5
Answer
Answer. c

7. Consider the matrix P=\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}.

Which one of the following statements about P is incorrect?

  1. determinant of P is equal to 1
  2. P is orthogonal
  3. inverse of P is equal to its transpose
  4. all eigen values of P are real numbers
Answer
Answer. d

8. The product of eigen values of the matrix P is

P =\begin{bmatrix} 2 & 0 & 1\\ 4 & -3 & 3\\ 0 & 2 & -1 \end{bmatrix}

  1. -6
  2. 2
  3. 6
  4. -2
Answer
Answer. b

9. Consider the matrix A=\begin{bmatrix} 50 & 70\\ 70 & 80 \end{bmatrix} whose eigen vectors corresponding to eigen values λ1 and λ2 are x_1=\begin{bmatrix} 70\\ \lambda_1-50 \end{bmatrix}\; and\; x_2=\begin{bmatrix} \lambda_2-80\\ 70 \end{bmatrix} respectively. The value of x1Tx2 is

  1. 0
  2. 1
  3. 2
  4. 4
Answer
Answer. a

10. The determinant of a 2 x 2 matrix is 50. If one eigen value of the matrix is 10, the other eigen value is

  1. 1
  2. 3
  3. 5
  4. 25
Answer
Answer. c

11. A 3 x 3 matrix P is such that, P3 = P. Then the eigen values of P are

  1. 1, 1, -1
  2. 1, 0.5 + j0.866, 0.5 -j0.866
  3. 1, -0.5 + j0.866, -0.5 – j0.866
  4. 0, 1, -1
Answer
Answer. d

12. Suppose that the eigen values of matrix A are 1, 2, 4. The determinant of (A-1)T is

  1. 0.125
  2. 0.225
  3. 0.200
  4. 0.140
Answer
Answer. a

13. Consider the matrix A=\begin{bmatrix} 2 & 1 & 1\\ 2 & 3 & 4\\ -1 & -1 & -2 \end{bmatrix} whose eigen values are 1, -1 and 3. Then trace of (A3 – 3A2) is

  1. 6
  2. -6
  3. 5
  4. -5
Answer
Answer. b

14. The value of x for which the matrix A=\begin{bmatrix} 3 & 2 & 4\\ 9 & 7 & 13\\ -6 & -4 & -9+x \end{bmatrix} has zero as an eigen value is

  1. 2
  2. 1
  3. 3
  4. 4
Answer
Answer. b

15. The number of linearly independent eigen vecctors of matrix A=\begin{bmatrix} 2 & 1 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix} is

  1. 2
  2. 1
  3. 3
  4. 4
Answer
Answer. a

Adblocker detected! Please consider reading this notice.

We've detected that you are using AdBlock Plus or some other adblocking software which is preventing the page from fully loading.

We don't have any banner, Flash, animation, obnoxious sound, or popup ad. We do not implement these annoying types of ads!

We need fund to operate the site, and almost all of it comes from our online advertising.

Please add electricalvoice.com to your ad blocking whitelist or disable your adblocking software.

×