61. The minimum and the maximum eigen values of the matrix $\begin{bmatrix} 1 & 1 & 3\\ 1 & 5 & 1\\ 3 & 1 & 1 \end{bmatrix}$ are -2 and 6, respectively. What is the other eigen value?
- 5
- 3
- 1
- -1
62. The number of linearly independent eigen vectors of $\begin{bmatrix} 2 & 1\\ 0 & 2 \end{bmatrix}$ is
- 0
- 1
- 2
- infinite
63. Eigen values of a matrix $\begin{bmatrix} 3 & 2\\ 2 & 3 \end{bmatrix}$ are 5 and 1. What are the eigen values of the matrix S2 = SS?
- 1 and 25
- 6 and 4
- 5 and 1
- 2 and 10
64. For a given matrix $\begin{bmatrix} 2 & -2 & 3\\ -2 & -1 & 6\\ 1 & 2 & 0 \end{bmatrix}$, one of the eigen values is 3. The other two eigen values are
- 2, -5
- 3, -5
- 2, 5
- 3, 5
65. For the matrix $\begin{bmatrix} 4 & 2\\ 2 & 4 \end{bmatrix}$ the eigen value corresponding to the eigen vector $\begin{bmatrix} 101\\ 101 \end{bmatrix}$ is
- 2
- 4
- 6
- 8
66. What are the eigen values of the following 2 x 2 matrix?
$\begin{bmatrix} 2 & -1\\ -4 & 5 \end{bmatrix}$
- -1 and 1
- 1 and 6
- 2 and 5
- 4 and -1
67. Given the matrix $\begin{bmatrix} -4 & 2\\ 4 & 3 \end{bmatrix}$
- \[\begin{bmatrix} 3\\ 2 \end{bmatrix}\]
- \[\begin{bmatrix} 4\\ 3 \end{bmatrix}\]
- \[\begin{bmatrix} 2\\ -1 \end{bmatrix}\]
- \[\begin{bmatrix} -1\\ 2 \end{bmatrix}\]
67. For the matrix $\begin{bmatrix} 3 & -2 & 2\\ 0 & -2 & 1\\ 0 & 0 & 1 \end{bmatrix}$, one of the eigen values is equal to -2. Which of the following is an eigen vector?
- \[\begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix}\]
- \[\begin{bmatrix} -3\\ 2\\ -1 \end{bmatrix}\]
- \[\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}\]
- \[\begin{bmatrix} 2\\ 5\\ 0 \end{bmatrix}\]
68. Which one of the following is an eigen vector of the matrix $\begin{bmatrix} 5 & 0 & 0 & 0\\ 0 & 5 & 5 & 0\\ 0 & 0 & 2 & 1\\ 0 & 0 & 3 & 1 \end{bmatrix}$?
- \[\begin{bmatrix} 1\\ -2\\ 0 \\ 0 \end{bmatrix}\]
- \[\begin{bmatrix} 0\\ 0\\ 1 \\ 0 \end{bmatrix}\]
- \[\begin{bmatrix} 1\\ 0\\ 0 \\ -2 \end{bmatrix}\]
- \[\begin{bmatrix} 1\\ -1\\ 2 \\ 1 \end{bmatrix}\]
69. The sum of the eigen values of the matrix given below is $\begin{bmatrix} 1 & 2 & 3\\ 1 & 5 & 1\\ 3 & 1 & 1 \end{bmatrix}$.
- 5
- 7
- 9
- 18
70. The eigen values of the matrix $\begin{bmatrix} 4 & -2\\ -2 & 1 \end{bmatrix}$
- are 1 and 4
- are -1 and 2
- are 0 and 5
- cannot be determined
71. For the matrix $\begin{bmatrix} 4 & 1\\ 1 & 4 \end{bmatrix}$ the eigen values are
- 3 and -3
- -3 and -5
- 3 and 5
- 5 and 0