Eigenvalues and Eigenvectors MCQ

31. Consider the following simultaneous equations (with c1 and c2 being constants):

3x1 + 2x2 = c1
4x1 + x2 = c2

The characterisitics equation for these simultaneous equations is

  1. λ2 – 4λ – 5 = 0
  2. λ2 – 4λ + 5 = 0
  3. λ2 + 4λ – 5 = 0
  4. λ2 + 4λ + 5 = 0
Answer
Answer. a

32. All the four entries of the 2 x 2 matrix $\begin{bmatrix} p_{11} & p_{12}\\ p_{21} & p_{22} \end{bmatrix}$ are nonzero, and one of its eigen values is zero. Which of the following statements is true?

  1. p11p22 – p12p21 = 1
  2. p11p22 – p12p21 = -1
  3. p11p22 – p12p21 = 0
  4. p11p22 + p12p21 = 0
Answer
Answer. c

33. If a square matrix A is real and symmetric, then the eigen values

  1. are always real
  2. are always real and positive
  3. are always real and non-negative
  4. occur in complex conjugate pairs
Answer
Answer. a

34. Which one of the following statements is true about every n x n matrix with only real eigen values?

  1. if the trace of the matrix is positive and the determinant of the matrix is negative, at least one of its eigen values is negative.
  2. if the trace of the matrix is positive, all its eigen values are positive.
  3. if the determinant of the matrix is positive, all its eigen values are positive.
  4. if the product of the trace and determinant of the matrix is positive, all its eigen values are positive.
Answer
Answer. a

35. The product of the non-zero eigen values of the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 1\\ 0 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 0\\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ is

  1. 2
  2. 3
  3. 6
  4. 8
Answer
Answer. c

36. The value of the dot product of the eigen vectors corresponding to any pair of different eigen values of a 4 x 4 symmetric positive definite matrix is

  1. -2
  2. 0
  3. 6
  4. 10
Answer
Answer. b

37. A real (4 x 4) matrix A satisfies the equation A2 = I, where I is the (4 x 4) identity matrix. The positive eigen value of A is

  1. +2
  2. +3
  3. +1
  4. +6
Answer
Answer. c

38. A system matrix is given as follows.

\[A=\begin{bmatrix} 0 & 1 & -1\\ -6 & -11 & 6\\ -6 & -11 & 5 \end{bmatrix}\]

The absolute value of the ratio of the maximum eigen value to the minimum eigen value is

  1. 2
  2. 3
  3. 6
  4. 8
Answer
Answer. b

39. One of the eigen vectors of matrix $\begin{bmatrix} -5 & 2\\ -9 & 6 \end{bmatrix}$

  1. \[\begin{Bmatrix} -1\\ 1 \end{Bmatrix}\]
  2. \[\begin{Bmatrix} -2\\ 9 \end{Bmatrix}\]
  3. \[\begin{Bmatrix} 2\\ -1 \end{Bmatrix}\]
  4. \[\begin{Bmatrix} 1\\ 1 \end{Bmatrix}\]
Answer
Answer. d

40. Consider a 3 x 3 real symmetric matrix S such that two of its eigen values are a≠0, b≠0 with respective eigen vectors $\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}\: , \begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}$. If a ≠ b then x1y1 + x2y2 + x3y3 equals

  1. a
  2. b
  3. ab
  4. 0
Answer
Answer. d

41. The sum of eigen values of matrix, [M] is

\[[M]=\begin{bmatrix} 215 & 650 & 795\\ 655 & 150 & 835\\ 485 & 355 & 550 \end{bmatrix}\]

  1. 915
  2. 1355
  3. 1640
  4. 2180
Answer
Answer. a

42. Which one of the following statements is not true for a square matrix A?

  1. if A is upper triangular matrix, the eigen values of A are the diagonal elements of it
  2. if A is real symmetric matrix, the eigen values of A are always real and positive
  3. if A is real, the eigen values of A and AT are always the same
  4. if all the principal minors of A are positive, all the eigen values of A are also positive
Answer
Answer. b

43. Which one of the following statements is true for all real symmetric matrices?

  1. all the eigen values are real
  2. all the eigen values are positive
  3. all the eigen values are distinct
  4. sum of all the eigen values is zero
Answer
Answer. a

44. The minimum eigen value of the following matrix is

\[\begin{bmatrix} 3 & 5 & 2\\ 5 & 12 & 7\\ 2 & 7 & 5 \end{bmatrix}\]

  1. 0
  2. 1
  3. 2
  4. 3
Answer
Answer. a

45. A matrix has eigen values -1 and -2. The corresponding eigen vectors are $\begin{bmatrix} 1\\ -1 \end{bmatrix}\; and \; \begin{bmatrix} 1\\ -2 \end{bmatrix}$ respectively. The matrix is

  1. \[\begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix}\]
  2. \[\begin{bmatrix} 1 & 2\\ -2 & -4 \end{bmatrix}\]
  3. \[\begin{bmatrix} -1 & 0\\ 0 & -2 \end{bmatrix}\]
  4. \[\begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix}\]
Answer
Answer. d

46. The eigen values of a symmetric matrix are all

  1. complex with non-zero positive imaginary part
  2. complex with non-zero negative imaginary part
  3. real
  4. pure imaginary
Answer
Answer. c

47. One pair of eigen vectors correponding to the two eigen values of the matrix $\begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix}$ is

  1. \[\begin{bmatrix} 1\\ -j \end{bmatrix}\; ,\; \begin{bmatrix} j\\ -1 \end{bmatrix}\]
  2. \[\begin{bmatrix} 0\\ 1 \end{bmatrix}\; ,\; \begin{bmatrix} -1\\ 0 \end{bmatrix}\]
  3. \[\begin{bmatrix} 1\\ j \end{bmatrix}\; ,\; \begin{bmatrix} 0\\ 1 \end{bmatrix}\]
  4. \[\begin{bmatrix} 1\\ j \end{bmatrix}\; ,\; \begin{bmatrix} j\\ 1 \end{bmatrix}\]
Answer
Answer. a and d

48. The eigen values of matrix $\begin{bmatrix} 9 & 5\\ 5 & 8 \end{bmatrix}$ are

  1. -2.42 and 6.86
  2. 3.48 and 13.53
  3. 4.70 and 6.86
  4. 6.86 and 9.50
Answer
Answer. b

49. Consider the matrix as given below:

\[\begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 7\\ 0 & 0 & 3 \end{bmatrix}\]

Which one of the following options provides the correct values of the eigen values of the matrix?

  1. 1, 4, 3
  2. 3, 7, 3
  3. 7, 3, 2
  4. 1, 2, 3
Answer
Answer. a

50. Eigen values of a real symmetric matrix are always

  1. positive
  2. negative
  3. real
  4. complex
Answer
Answer. c

51. Consider the following matrix

\[A=\begin{bmatrix} 2 & 3\\ x & y \end{bmatrix}\]

If the eigen values of A are 4 and 8, then

  1. x = 4, y = 10
  2. x = 5, y = 8
  3. x = -3, y = 9
  4. x = -4, y = 10
Answer
Answer. d

52. The eigen values of a skew-symmetric matrix are

  1. always zero
  2. always pure imaginary
  3. either zero or pure imaginary
  4. always real
Answer
Answer. c

53. An eigen vector of $P=\begin{bmatrix} 1 & 1 & 0\\ 0 & 2 & 2\\ 0 & 0 & 3 \end{bmatrix}$ is

  1. [-1  1  1]T
  2. [1  2  1]T
  3. [1  -1  2]T
  4. [2  1  -1]T
Answer
Answer. b

54. One of the eigen vectors of the matrix $A=\begin{bmatrix} 2 & 2\\ 1 & 3 \end{bmatrix}$

  1. \[\begin{Bmatrix} 2\\ -1 \end{Bmatrix}\]
  2. \[\begin{Bmatrix} 2\\ 1 \end{Bmatrix}\]
  3. \[\begin{Bmatrix} 4\\ 1 \end{Bmatrix}\]
  4. \[\begin{Bmatrix} 1\\ -1 \end{Bmatrix}\]
Answer
Answer. a

55. The eigen values of the following matrix are

\[P=\begin{bmatrix} -1 & 3 & 5\\ -3 & -1 & 6\\ 0 & 0 & 3 \end{bmatrix}\]

  1. 3, 3 + 5j, 6 – j
  2. -6 + 5j, 3 + j, 3 – j
  3. 3 + j, 3 – j, 5 + j
  4. 3, -1 + 3j, -1 – 3j
Answer
Answer. d

56. The trace and determinant of a 2 x 2 matrix are known to be -2 and -35 respectively. It eigen values are

  1. -30 and -5
  2. -37 and -1
  3. -7 and 5
  4. 17.5 and -2
Answer
Answer. c

57. The matrix $\begin{bmatrix} 1 & 2 & 4\\ 3 & 0 & 6\\ 1 & 1 & p \end{bmatrix}$ has one eigen value equal to 3. The sum of the other two eigen values is

  1. p
  2. p-1
  3. p-2
  4. p-3
Answer
Answer. c

58. How many of the following matrices have an eigen value 1?

\[\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}and \begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix},\]

  1. one
  2. two
  3. three
  4. four
Answer
Answer. a

59. The eigen vectors of the matrix $\begin{bmatrix} 1 & 2\\ 0 & 2 \end{bmatrix}$ are written in the form $\begin{bmatrix} 1\\ a \end{bmatrix} and \begin{bmatrix} 1\\ b \end{bmatrix}$. What is a+b?

  1. 0
  2. 1/2
  3. 1
  4. 2
Answer
Answer. a

60. The eigen values of the matrix $P=\begin{bmatrix} 4 & 5\\ 2 & -5 \end{bmatrix}$ are

  1. -7 and 8
  2. -6 and 5
  3. 3 and 4
  4. 1 and 2
Answer
Answer. b