31. Consider the following simultaneous equations (with c1 and c2 being constants):
3x1 + 2x2 = c1
4x1 + x2 = c2
The characterisitics equation for these simultaneous equations is
- λ2 – 4λ – 5 = 0
- λ2 – 4λ + 5 = 0
- λ2 + 4λ – 5 = 0
- λ2 + 4λ + 5 = 0
32. All the four entries of the 2 x 2 matrix $\begin{bmatrix} p_{11} & p_{12}\\ p_{21} & p_{22} \end{bmatrix}$ are nonzero, and one of its eigen values is zero. Which of the following statements is true?
- p11p22 – p12p21 = 1
- p11p22 – p12p21 = -1
- p11p22 – p12p21 = 0
- p11p22 + p12p21 = 0
33. If a square matrix A is real and symmetric, then the eigen values
- are always real
- are always real and positive
- are always real and non-negative
- occur in complex conjugate pairs
34. Which one of the following statements is true about every n x n matrix with only real eigen values?
- if the trace of the matrix is positive and the determinant of the matrix is negative, at least one of its eigen values is negative.
- if the trace of the matrix is positive, all its eigen values are positive.
- if the determinant of the matrix is positive, all its eigen values are positive.
- if the product of the trace and determinant of the matrix is positive, all its eigen values are positive.
35. The product of the non-zero eigen values of the matrix $\begin{bmatrix} 1 & 0 & 0 & 0 & 1\\ 0 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 0\\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ is
- 2
- 3
- 6
- 8
36. The value of the dot product of the eigen vectors corresponding to any pair of different eigen values of a 4 x 4 symmetric positive definite matrix is
- -2
- 0
- 6
- 10
37. A real (4 x 4) matrix A satisfies the equation A2 = I, where I is the (4 x 4) identity matrix. The positive eigen value of A is
- +2
- +3
- +1
- +6
38. A system matrix is given as follows.
\[A=\begin{bmatrix} 0 & 1 & -1\\ -6 & -11 & 6\\ -6 & -11 & 5 \end{bmatrix}\]
The absolute value of the ratio of the maximum eigen value to the minimum eigen value is
- 2
- 3
- 6
- 8
39. One of the eigen vectors of matrix $\begin{bmatrix} -5 & 2\\ -9 & 6 \end{bmatrix}$
- \[\begin{Bmatrix} -1\\ 1 \end{Bmatrix}\]
- \[\begin{Bmatrix} -2\\ 9 \end{Bmatrix}\]
- \[\begin{Bmatrix} 2\\ -1 \end{Bmatrix}\]
- \[\begin{Bmatrix} 1\\ 1 \end{Bmatrix}\]
40. Consider a 3 x 3 real symmetric matrix S such that two of its eigen values are a≠0, b≠0 with respective eigen vectors $\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}\: , \begin{bmatrix} y_1\\ y_2\\ y_3 \end{bmatrix}$. If a ≠ b then x1y1 + x2y2 + x3y3 equals
- a
- b
- ab
- 0
41. The sum of eigen values of matrix, [M] is
\[[M]=\begin{bmatrix} 215 & 650 & 795\\ 655 & 150 & 835\\ 485 & 355 & 550 \end{bmatrix}\]
- 915
- 1355
- 1640
- 2180
42. Which one of the following statements is not true for a square matrix A?
- if A is upper triangular matrix, the eigen values of A are the diagonal elements of it
- if A is real symmetric matrix, the eigen values of A are always real and positive
- if A is real, the eigen values of A and AT are always the same
- if all the principal minors of A are positive, all the eigen values of A are also positive
43. Which one of the following statements is true for all real symmetric matrices?
- all the eigen values are real
- all the eigen values are positive
- all the eigen values are distinct
- sum of all the eigen values is zero
44. The minimum eigen value of the following matrix is
\[\begin{bmatrix} 3 & 5 & 2\\ 5 & 12 & 7\\ 2 & 7 & 5 \end{bmatrix}\]
- 0
- 1
- 2
- 3
45. A matrix has eigen values -1 and -2. The corresponding eigen vectors are $\begin{bmatrix} 1\\ -1 \end{bmatrix}\; and \; \begin{bmatrix} 1\\ -2 \end{bmatrix}$ respectively. The matrix is
- \[\begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix}\]
- \[\begin{bmatrix} 1 & 2\\ -2 & -4 \end{bmatrix}\]
- \[\begin{bmatrix} -1 & 0\\ 0 & -2 \end{bmatrix}\]
- \[\begin{bmatrix} 0 & 1\\ -2 & -3 \end{bmatrix}\]
46. The eigen values of a symmetric matrix are all
- complex with non-zero positive imaginary part
- complex with non-zero negative imaginary part
- real
- pure imaginary
47. One pair of eigen vectors correponding to the two eigen values of the matrix $\begin{bmatrix} 1 & 1\\ -1 & -2 \end{bmatrix}$ is
- \[\begin{bmatrix} 1\\ -j \end{bmatrix}\; ,\; \begin{bmatrix} j\\ -1 \end{bmatrix}\]
- \[\begin{bmatrix} 0\\ 1 \end{bmatrix}\; ,\; \begin{bmatrix} -1\\ 0 \end{bmatrix}\]
- \[\begin{bmatrix} 1\\ j \end{bmatrix}\; ,\; \begin{bmatrix} 0\\ 1 \end{bmatrix}\]
- \[\begin{bmatrix} 1\\ j \end{bmatrix}\; ,\; \begin{bmatrix} j\\ 1 \end{bmatrix}\]
48. The eigen values of matrix $\begin{bmatrix} 9 & 5\\ 5 & 8 \end{bmatrix}$ are
- -2.42 and 6.86
- 3.48 and 13.53
- 4.70 and 6.86
- 6.86 and 9.50
49. Consider the matrix as given below:
\[\begin{bmatrix} 1 & 2 & 3\\ 0 & 4 & 7\\ 0 & 0 & 3 \end{bmatrix}\]
Which one of the following options provides the correct values of the eigen values of the matrix?
- 1, 4, 3
- 3, 7, 3
- 7, 3, 2
- 1, 2, 3
50. Eigen values of a real symmetric matrix are always
- positive
- negative
- real
- complex
51. Consider the following matrix
\[A=\begin{bmatrix} 2 & 3\\ x & y \end{bmatrix}\]
If the eigen values of A are 4 and 8, then
- x = 4, y = 10
- x = 5, y = 8
- x = -3, y = 9
- x = -4, y = 10
52. The eigen values of a skew-symmetric matrix are
- always zero
- always pure imaginary
- either zero or pure imaginary
- always real
53. An eigen vector of $P=\begin{bmatrix} 1 & 1 & 0\\ 0 & 2 & 2\\ 0 & 0 & 3 \end{bmatrix}$ is
- [-1 1 1]T
- [1 2 1]T
- [1 -1 2]T
- [2 1 -1]T
54. One of the eigen vectors of the matrix $A=\begin{bmatrix} 2 & 2\\ 1 & 3 \end{bmatrix}$
- \[\begin{Bmatrix} 2\\ -1 \end{Bmatrix}\]
- \[\begin{Bmatrix} 2\\ 1 \end{Bmatrix}\]
- \[\begin{Bmatrix} 4\\ 1 \end{Bmatrix}\]
- \[\begin{Bmatrix} 1\\ -1 \end{Bmatrix}\]
55. The eigen values of the following matrix are
\[P=\begin{bmatrix} -1 & 3 & 5\\ -3 & -1 & 6\\ 0 & 0 & 3 \end{bmatrix}\]
- 3, 3 + 5j, 6 – j
- -6 + 5j, 3 + j, 3 – j
- 3 + j, 3 – j, 5 + j
- 3, -1 + 3j, -1 – 3j
56. The trace and determinant of a 2 x 2 matrix are known to be -2 and -35 respectively. It eigen values are
- -30 and -5
- -37 and -1
- -7 and 5
- 17.5 and -2
57. The matrix $\begin{bmatrix} 1 & 2 & 4\\ 3 & 0 & 6\\ 1 & 1 & p \end{bmatrix}$ has one eigen value equal to 3. The sum of the other two eigen values is
- p
- p-1
- p-2
- p-3
58. How many of the following matrices have an eigen value 1?
\[\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix}and \begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix},\]
- one
- two
- three
- four
59. The eigen vectors of the matrix $\begin{bmatrix} 1 & 2\\ 0 & 2 \end{bmatrix}$ are written in the form $\begin{bmatrix} 1\\ a \end{bmatrix} and \begin{bmatrix} 1\\ b \end{bmatrix}$. What is a+b?
- 0
- 1/2
- 1
- 2
60. The eigen values of the matrix $P=\begin{bmatrix} 4 & 5\\ 2 & -5 \end{bmatrix}$ are
- -7 and 8
- -6 and 5
- 3 and 4
- 1 and 2