16. Let the eigen values of a 2 x 2 matrix A be 1, -2 with eigen vectors x1 and x2 respectively. Then the eigen values and eigen vectors of the matrix A2 – 3A + 4I would, respectively, be
- 2, 14; x1, x2
- 2, 14; x1+ x2, x1– x2
- 2, 0; x1, x2
- 2, 0; x1+ x2, x1– x2
17. Two eigen values of a 3 x 3 real matrix P are $2+\sqrt{-1}$ and 3. The determinant of P is
- 5
- 10
- 15
- 20
18. Consider a 2 x 2 square matrix
\[A=\begin{bmatrix} \sigma & x\\ \omega & \sigma \end{bmatrix}\]
where x is unknown. If the eigen values of the matrix A are (σ + jω) and (σ – jω), then x is equal to
- + jω
- – jω
- + ω
- – ω
19. The condition for which the eigen values of the matrix $A=\begin{bmatrix} 2 & 1\\ 1 & k \end{bmatrix}$ are positive, is
- k > 1/2
- k > -2
- k > 0
- k < -1/2
20. Consider a 3 x 3 matrix with every element being equal to 1. Its only non-zero eigen value is
- 1
- 2
- 4
- 3
21. If the entries in each column of a square matrix M add up to 1, then an eigen value of M is
- 4
- 3
- 2
- 1
22. Consider the following 2 x 2 matrix A where two elements are unknown and are marked by a and b. The eigen values of this matrix are -1 and 7. What are the values of a and b?
$A=\begin{bmatrix} 1 & 4\\ b & a \end{bmatrix}$
- a = 6, b = 4
- a = 4, b = 6
- a = 3, b = 5
- a = 5, b = 3
23. The value of x for which all the eigen-values of the matrix given below are real is
\[\begin{bmatrix} 10 & 5+j & 4\\ x & 20 & 2\\ 4 & 2 & -10 \end{bmatrix}\]
- 5 + j
- 5 – j
- 1 – 5j
- 1 + 5j
24. At least one eigen value of a singular matrix is
- positive
- zero
- negative
- imaginary
25. The two eigen values of the matrix $\begin{bmatrix} 2 & 1\\ 1 & p \end{bmatrix}$ have a ratio of 3 : 1 for p = 2. What is another value of p for which the eigen values have the same ratio of 3 : 1?
- -2
- 1
- 7/3
- 14/3
26. The larger of the two eigen values of the matrix $\begin{bmatrix} 4 & 5\\ 2 & 1 \end{bmatrix}$ is
- 4
- 6
- 1
- 2
27. The value of p such that the vector $\begin{bmatrix} 1\\ 2 \\ 3 \end{bmatrix}$ is an eigen vector of the matrix $\begin{bmatrix} 4 & 1 & 2\\ p & 2 & 1\\ 14 & -4 & 10 \end{bmatrix}$ is
- 17
- 16
- 15
- 14
28. The lowest eigen value of the 2 x 2 matrix $\begin{bmatrix} 4 & 2\\ 1 & 3 \end{bmatrix}$ is
- 5
- 2
- 3
- 4
29. The smallest and largest eigen values of the following matrix are
$\begin{bmatrix} 3 & -2 & 2 \\ 4 & -4 & 6 \\ 2 & -3 & 5 \end{bmatrix}$
- 1.5 and 2.5
- 0.5 and 2.5
- 1 and 3
- 1 and 2
30. In the given matrix $\begin{bmatrix} 1 & -1 & 2\\ 0 & 1 & 0\\ 1 & 2 & 1 \end{bmatrix}$, one of the eigen values is 1. The eigen vectors corresponding to the eigen value 1 are
- {α(4,2,1) | α ≠ 0, α ∈ R}
- {α(-4,2,1) | α ≠ 0, α ∈ R}
- {α($\sqrt{2}$,0,1) | α ≠ 0, α ∈ R}
- {α($-\sqrt{2}$,0,1) | α ≠ 0, α ∈ R}