1. Consider the matrix $\begin{bmatrix} 5 & -1\\ 4 & 1 \end{bmatrix}$. Which one of the following statements is true for the eigen values and eigen vectors of this matrix?
- eigen value 3 has a multiplicity of 2, and only one independent eigen vector exists.
- eigen value 3 has a multiplicity of 2, and two independent eigen vector exists.
- eigen value 3 has a multiplicity of 2, and no independent eigen vector exists.
- eigen value are 3 and -3, and two independent eigen vectors exist.
2. If the characteristic polynomial of a 3 x 3 matrix M over R (the set of real numbers) is λ3 – 4λ2 + aλ + 30, a ∈ R and one eigen value of M is 2. Then the largest among the absolute values of the eigen values of M is
- 5
- 2
- 3
- 6
3. Consider the 5 x 5 matrix
\[A=\begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 5 & 1 & 2 & 3 & 4\\ 4 & 5 & 1 & 2 & 3\\ 3 & 4 & 5 & 1 & 2\\ 2 & 3 & 4 & 5 & 1 \end{bmatrix}\]
It is given that A has only one real eigen value. Then the real eigen value of A is
- -2.5
- 0
- 15
- 25
4. The matrix $A=\begin{bmatrix} \frac{3}{2} & 0 & \frac{1}{2}\\ 0 & -1 & 0\\ \frac{1}{2} & 0 & \frac{3}{2} \end{bmatrix}$ has three distinct eigen values and one of its eigen vectors is $\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$. Which one of the following can be another eigen vector of A?
- $\begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}$
- $\begin{bmatrix} -1\\ 0\\ 0 \end{bmatrix}$
- $\begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$
- $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$
5. The eigen values of the matrix given below are
\[\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 1\\ 0 & -3 & -4 \end{bmatrix}\]
- (0, -1, -3)
- (0, -2, -3)
- (0, 2, 3)
- (0, 1, 3)
6. The eigen values of the matrix $A=\begin{bmatrix} 1 & -1 & 5\\ 0 & 5 & 6\\ 0 & -6 & 5 \end{bmatrix}$ are
- -1, 5, 6
- 1, -5 ± j6
- 1, 5 ± j6
- 1, 5, 5
7. Consider the matrix $P=\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0\\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$.
Which one of the following statements about P is incorrect?
- determinant of P is equal to 1
- P is orthogonal
- inverse of P is equal to its transpose
- all eigen values of P are real numbers
8. The product of eigen values of the matrix P is
$P =\begin{bmatrix} 2 & 0 & 1\\ 4 & -3 & 3\\ 0 & 2 & -1 \end{bmatrix}$
- -6
- 2
- 6
- -2
9. Consider the matrix $A=\begin{bmatrix} 50 & 70\\ 70 & 80 \end{bmatrix}$ whose eigen vectors corresponding to eigen values λ1 and λ2 are $x_1=\begin{bmatrix} 70\\ \lambda_1-50 \end{bmatrix}\; and\; x_2=\begin{bmatrix} \lambda_2-80\\ 70 \end{bmatrix}$ respectively. The value of x1Tx2 is
- 0
- 1
- 2
- 4
10. The determinant of a 2 x 2 matrix is 50. If one eigen value of the matrix is 10, the other eigen value is
- 1
- 3
- 5
- 25
11. A 3 x 3 matrix P is such that, P3 = P. Then the eigen values of P are
- 1, 1, -1
- 1, 0.5 + j0.866, 0.5 -j0.866
- 1, -0.5 + j0.866, -0.5 – j0.866
- 0, 1, -1
12. Suppose that the eigen values of matrix A are 1, 2, 4. The determinant of (A-1)T is
- 0.125
- 0.225
- 0.200
- 0.140
13. Consider the matrix $A=\begin{bmatrix} 2 & 1 & 1\\ 2 & 3 & 4\\ -1 & -1 & -2 \end{bmatrix}$ whose eigen values are 1, -1 and 3. Then trace of (A3 – 3A2) is
- 6
- -6
- 5
- -5
14. The value of x for which the matrix $A=\begin{bmatrix} 3 & 2 & 4\\ 9 & 7 & 13\\ -6 & -4 & -9+x \end{bmatrix}$ has zero as an eigen value is
- 2
- 1
- 3
- 4
15. The number of linearly independent eigen vecctors of matrix $A=\begin{bmatrix} 2 & 1 & 0\\ 0 & 2 & 0\\ 0 & 0 & 3 \end{bmatrix}$ is
- 2
- 1
- 3
- 4