Controllability and Observability MCQ

1. Consider a second order system whose state space representation is of the form

\dot x = Ax + Bu. If x1(t) = x2(t), then system is

  1. unstable
  2. observable
  3. uncontrollable
  4. controllable
Answer
Answer. c

2. For a feedback control system all the roots of the characteristic equation can be placed at the desired location in the s-plane if and only if the system is

  1. observable
  2. controllable

Which of the above statements are correct?

  1. i only
  2. ii only
  3. both i and ii
  4. neither i nor ii
Answer
Answer. b

3. A transfer function of a control system does not have pole-zero cancellation. Which one of the following statement is true?

  1. system is controllable but unobservable
  2. system is observable but uncontrollable
  3. system is completely controllable and observable
  4. system is neither controllable nor observable
Answer
Answer. c

4. For the system \dot x = \begin{bmatrix} 2 & 3\\ 0 & 5 \end{bmatrix}x + \begin{bmatrix} 1\\ 0 \end{bmatrix}u, which of the following statement is true?

  1. The system is uncontrollable and stable.
  2. The system is controllable and stable.
  3. The system is uncontrollable and unstable.
  4. The system is controllable but unstable.
Answer
Answer. c

Adblocker detected! Please consider reading this notice.

We've detected that you are using AdBlock Plus or some other adblocking software which is preventing the page from fully loading.

We don't have any banner, Flash, animation, obnoxious sound, or popup ad. We do not implement these annoying types of ads!

We need fund to operate the site, and almost all of it comes from our online advertising.

Please add electricalvoice.com to your ad blocking whitelist or disable your adblocking software.

×